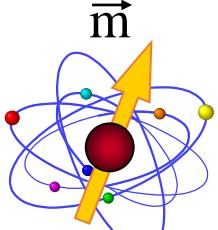
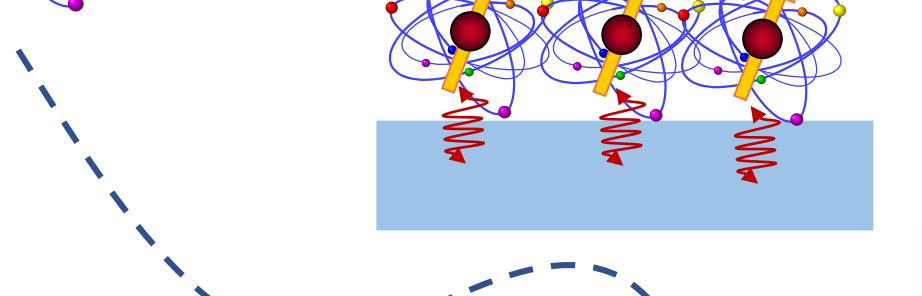
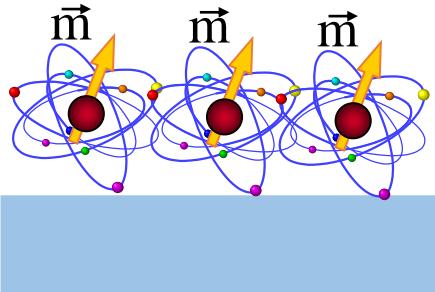


Lecture 8

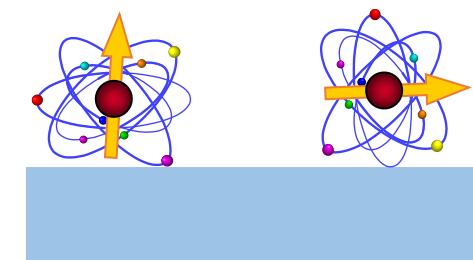
*Dynamics for quantized spins:
Spin Hamiltonian*

The spintronics “goose game”

Atom magnetism



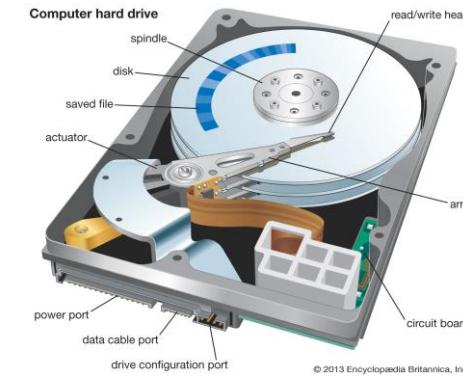
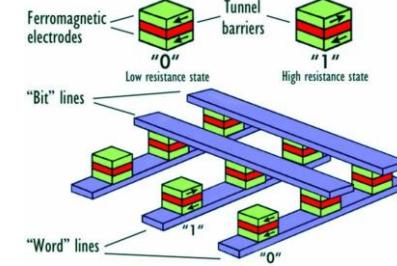
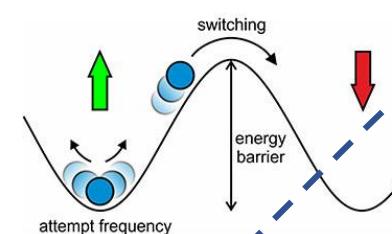
magnetic moment in a cluster and/or on a support



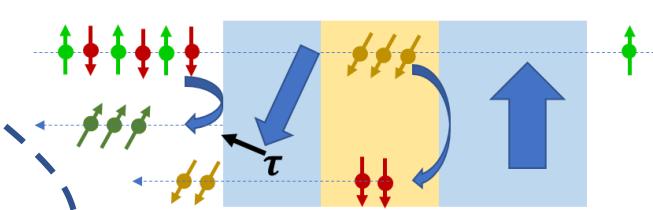
Magnetization easy axis

interactions between spins and with the supporting substrate

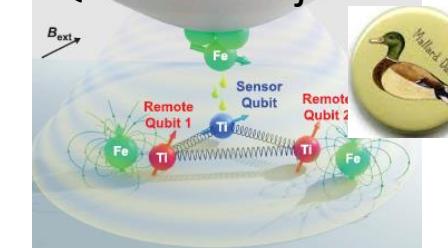
applications



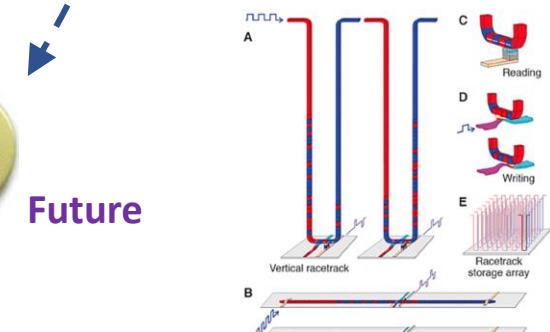
STT - SOT



Quantum objects



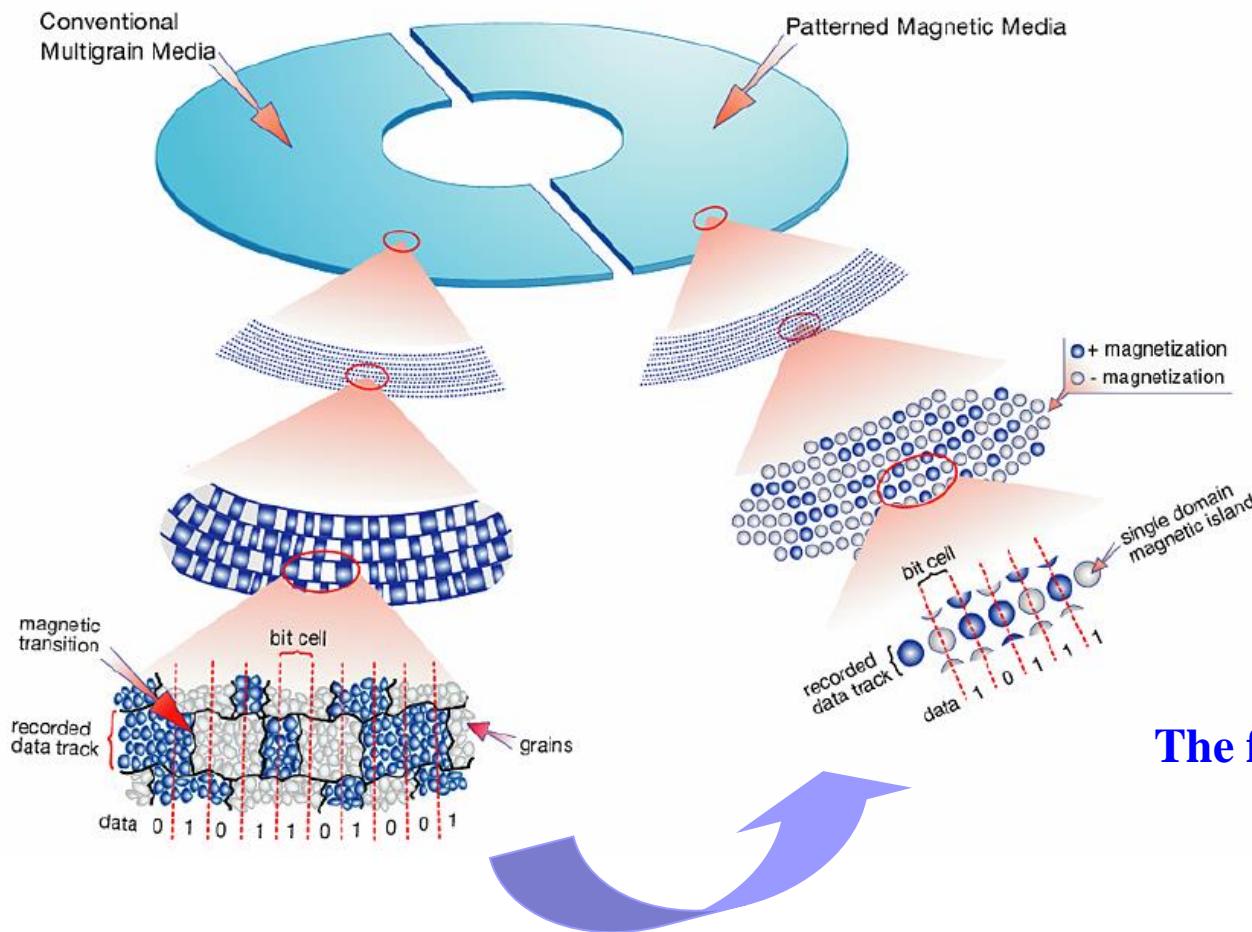
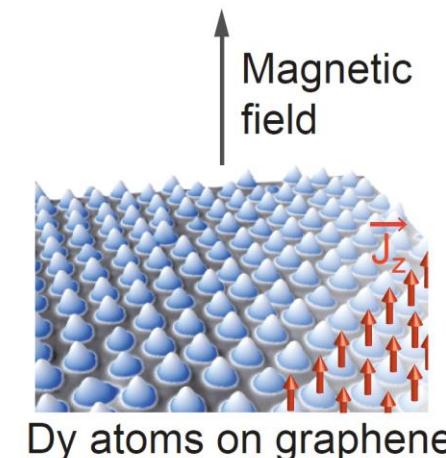
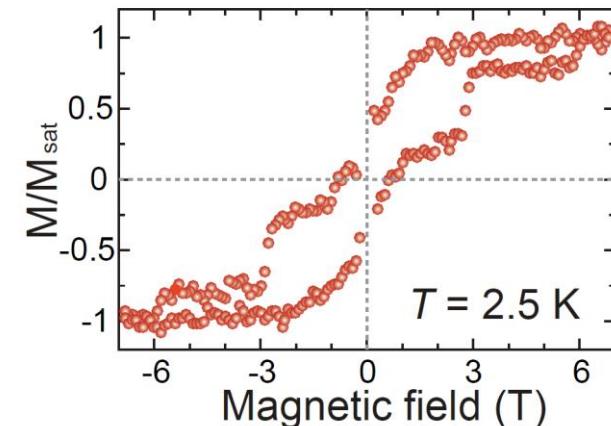
(g) Skyrmion racetrack memory



Future

Conventional Media vs. Patterned Media

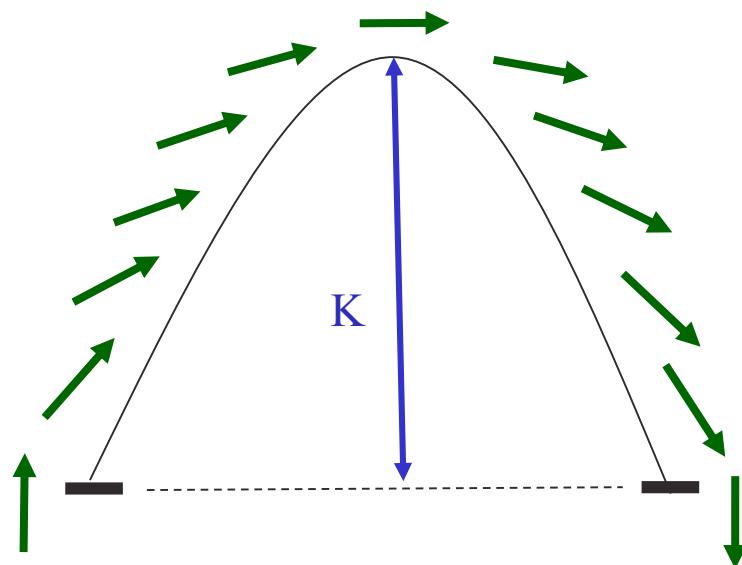
HITACHI
Inspire the Next



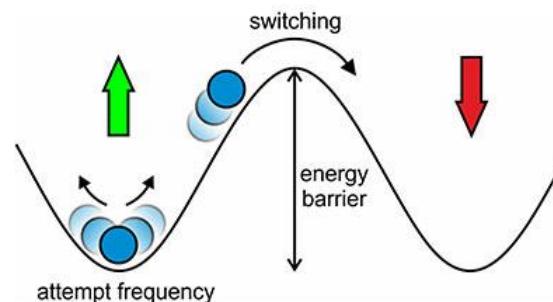
The future: single particle per bit

The future of the future: single atom per bit

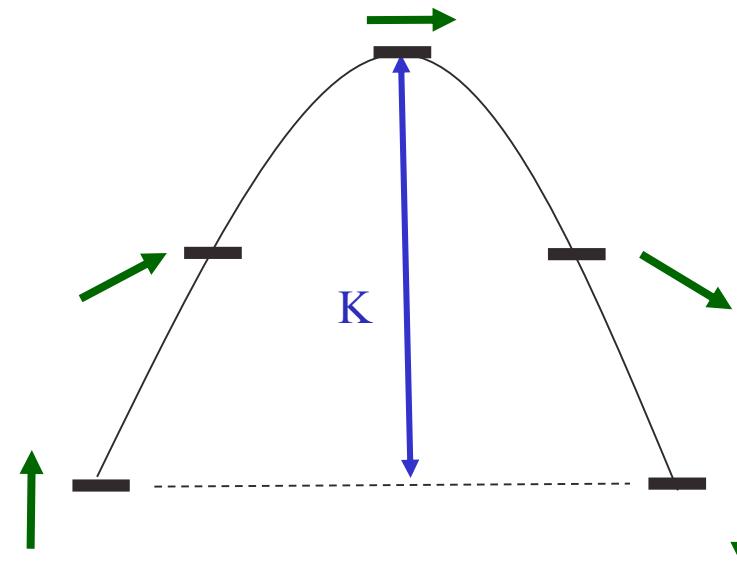
Classic



Continuous magnetization rotation:
the magnetization rotates and passes
through the hard axis direction



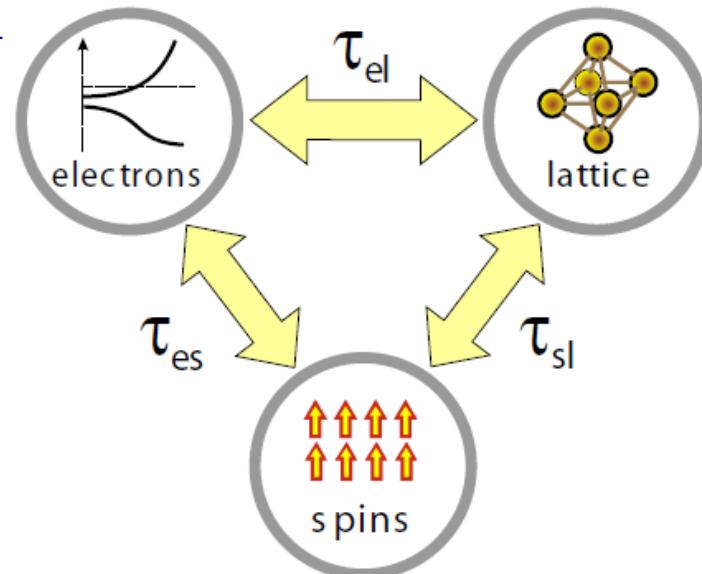
Quantum



Only a discrete number of states
are available

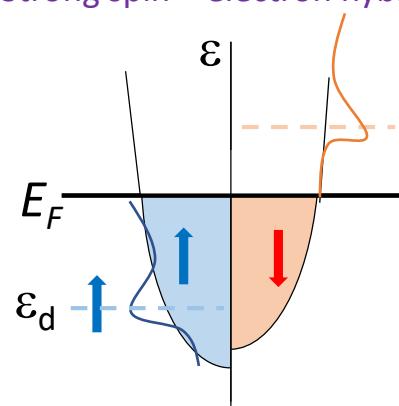
Interacting reservoirs

doi:10.1088/0034-4885/76/2/026501



Classic

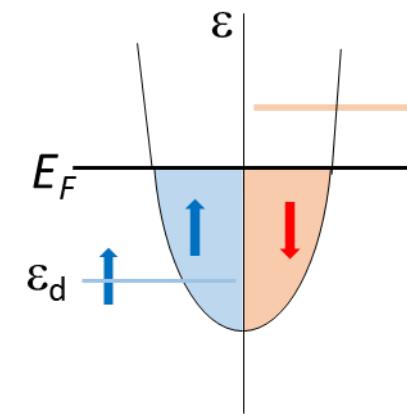
Ex.: Strong spin – electron hybridization



Strong spin – electron (phonon)
hybridization \Rightarrow continuous spin
reversal models (ex.: LLG eq.)

Quantum

Ex.: poor spin – electron hybridization



Poor spin – electron (phonon)
hybridization \Rightarrow how do we model
the spin reversal ?

Transition metals

$$H_{tot} = H_{e-e} + H_{CF} + H_{SOC} + H_Z$$

$$\mathcal{H}_{\text{sp-orb}} = \lambda \mathbf{L} \cdot \mathbf{S}$$

$$\mathcal{H}_Z = \mu_B (\mathbf{L} + 2\mathbf{S}) \cdot \mathbf{H}$$

$$H = H_{e-e} + H_{CF}$$

$|\Gamma, \gamma\rangle |S, M_S\rangle$ Basis that diagonalize H (Γ is the orbital part)

$$\mathcal{H}_{\text{eff}} = \langle \Gamma, \gamma | \mathcal{H}_{\text{sp-orb}} + \mathcal{H}_Z | \Gamma, \gamma \rangle$$

SOC + Zeeman in second order perturbation theory

$$= 2\mu_B \mathbf{H} \cdot \mathbf{S} - \sum_{\Gamma', \gamma'} \frac{|\langle \Gamma', \gamma' | \mu_B \mathbf{H} \cdot \mathbf{L} + \lambda \mathbf{L} \cdot \mathbf{S} | \Gamma, \gamma \rangle|^2}{E_{\Gamma', \gamma'} - E_{\Gamma, \gamma}}$$

$$\mathcal{H}_{\text{eff}} = 2\mu \mathbf{H} \cdot \mathbf{S} - 2\mu_B \lambda \sum_{\mu, \nu} \Lambda_{\mu\nu} S_\mu H_\nu - \lambda^2 \sum_{\mu, \nu} \Lambda_{\mu\nu} S_\mu S_\nu - \mu_B^2 \sum_{\mu, \nu} \Lambda_{\mu\nu} H_\mu H_\nu$$

$$\mathcal{H}_{\text{eff}} = \sum_{\mu, \nu} (\mu_B g_{\mu\nu} H_\mu S_\nu - \lambda^2 \Lambda_{\mu\nu} S_\mu S_\nu - \mu_B^2 \Lambda_{\mu\nu} H_\mu H_\nu)$$

$$\Lambda_{\mu\nu} = \sum_{\Gamma' \gamma'} \frac{\langle \Gamma, \gamma | L_\mu | \Gamma', \gamma' \rangle \langle \Gamma', \gamma' | L_\nu | \Gamma, \gamma \rangle}{E_{\Gamma', \gamma'} - E_{\Gamma, \gamma}}$$

$\mu, \nu = x, y, z$

$$g_{\mu\nu} = 2(\delta_{\mu\nu} - \lambda \Lambda_{\mu\nu}) \rightarrow g_{\mu\mu} = 2 \text{ only if } L=0 \rightarrow \text{free electron}$$

$\Lambda_{\mu\nu}$ reflects the symmetry of the crystal.

$$\Lambda_{\mu\nu} = \sum_{\Gamma'\gamma'} \frac{\langle \Gamma, \gamma | L_\mu | \Gamma', \gamma' \rangle \langle \Gamma', \gamma' | L_\nu | \Gamma, \gamma \rangle}{E_{\Gamma', \gamma'} - E_{\Gamma, \gamma}}$$

The spin Hamiltonian must also display this symmetry:

in a cubic crystal $\Lambda_{xx} = \Lambda_{yy} = \Lambda_{zz}$.

For axial symmetry $\Lambda_{xx} = \Lambda_{yy} = \Lambda_{\perp}$ and $\Lambda_{zz} = \Lambda_{\parallel}$

Neglecting $\mu_B^2 \Lambda_{\mu\nu} H_\mu H_\nu$

$$\mathcal{H}_{\text{eff}} = g_{\parallel} \mu_B H_z S_z + g_{\perp} \mu_B (H_x S_x + H_y S_y) + D [S_z^2 - \frac{1}{3} S(S+1)] + \frac{1}{3} S(S+1) (2 \Lambda_{\perp} + \Lambda_{\parallel}) \lambda^2$$

$D = \lambda^2 (\Lambda_{\parallel} - \Lambda_{\perp})$ contains all the information concerning the crystal field i.e. the orbital moment anisotropy

The Spin Hamiltonian is a phenomenological Hamiltonian with D , g_{\parallel} and g_{\perp} as parameters:

- D is used to describe the uni-axial anisotropy
- g_{\parallel} and g_{\perp} reflect the anisotropy of the orbital moment

Example: axial symmetry ($C_{\infty v}$) and $H = (0, 0, H_z)$

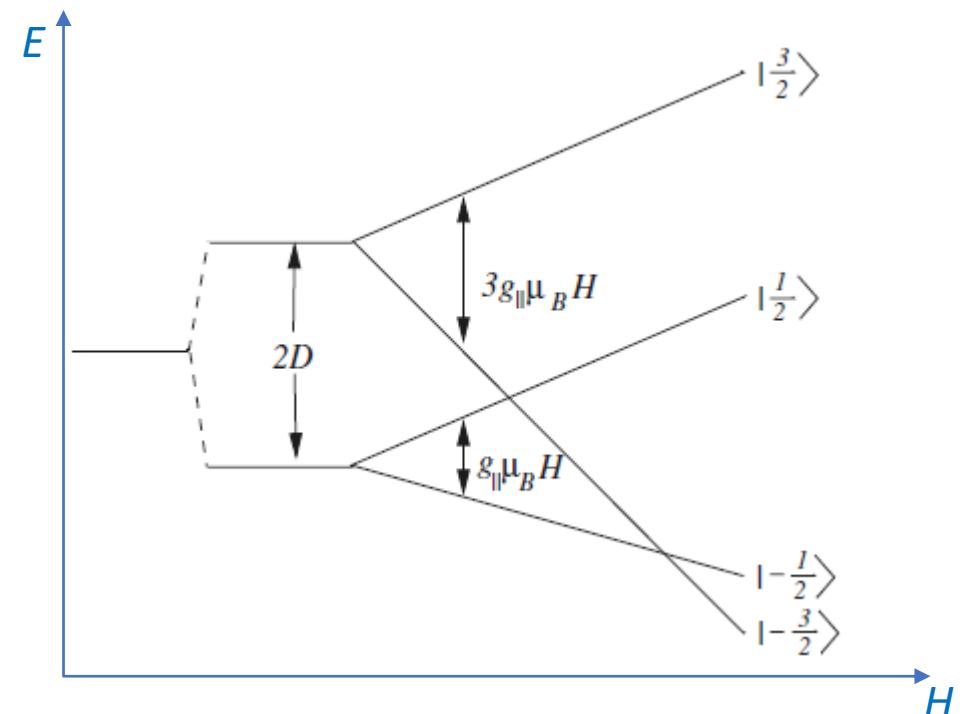
$$H_{eff} = g_{\parallel} \mu_B (H_z S_z) + D S_z^2 + \frac{1}{3} S(S+1) [\lambda^2 (\Lambda_{\perp} - \Lambda_{\parallel}) + \lambda^2 (2\Lambda_{\perp} + \Lambda_{\parallel})] = g_{\parallel} \mu_B (H_z S_z) + D S_z^2 + S(S+1) \lambda^2 \Lambda_{\perp}$$

$S = 3/2$ and $D > 0$ (we can neglect the effect of $S(S+1)\lambda^2 \Lambda_{\perp}$ since it is just a shift in energy)

$$H_{eff} = g_{\parallel} \mu_B (H_z S_z) + D S_z^2$$

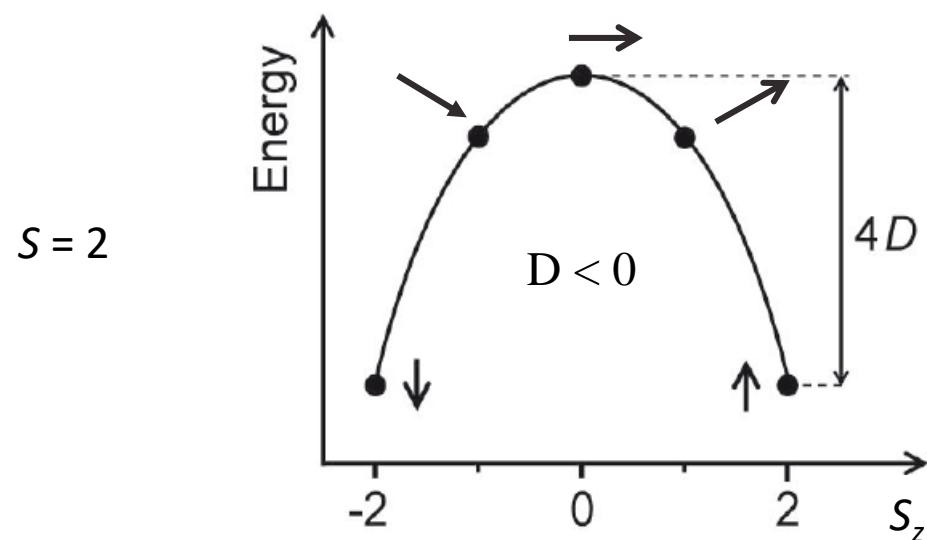
$$D = \lambda^2 (\Lambda_{\parallel} - \Lambda_{\perp})$$

$$\mathcal{H}_{\text{eff}} = \begin{bmatrix} \langle -\frac{3}{2} | & \left| -\frac{3}{2} \right\rangle & \left| -\frac{1}{2} \right\rangle & \left| \frac{1}{2} \right\rangle & \left| \frac{3}{2} \right\rangle \\ \langle -\frac{1}{2} | & 0 & -D - \frac{1}{2} g_{\parallel} \mu_B H & 0 & 0 \\ \langle \frac{1}{2} | & 0 & 0 & -D + \frac{1}{2} g_{\parallel} \mu_B H & 0 \\ \langle \frac{3}{2} | & 0 & 0 & 0 & D + \frac{3}{2} g_{\parallel} \mu_B H \end{bmatrix}$$

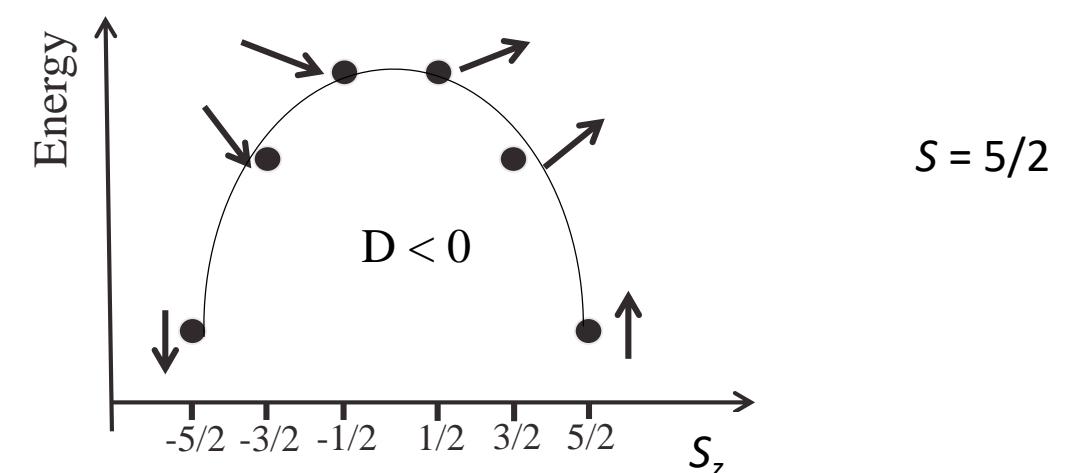


Energy barrier for spin reversal (E_b): easy axis along z

$$E_b = DS_z^2 \quad (\text{S integer})$$

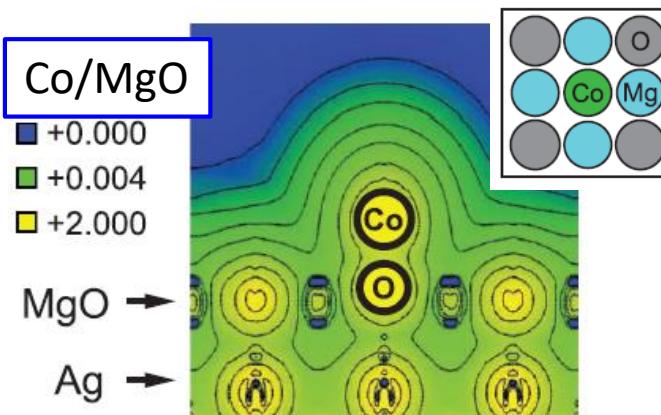


$$E_b = D \left(S_z^2 - \frac{1}{4} \right) \quad (\text{S half-integer})$$



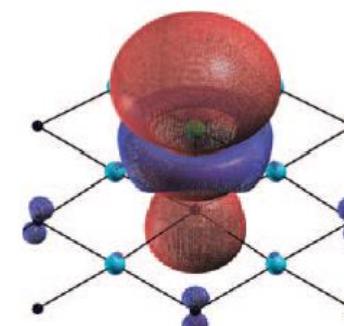
$S = 5/2$

Charge distribution



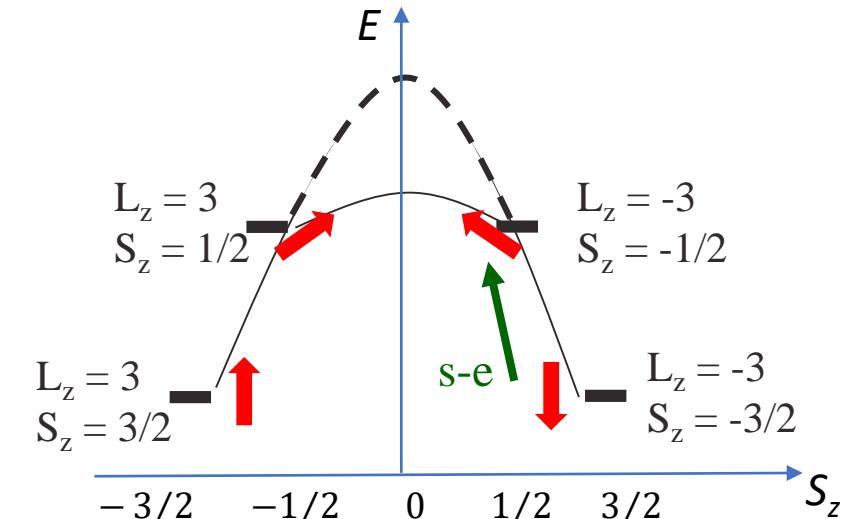
Spin distribution

Majority Minority

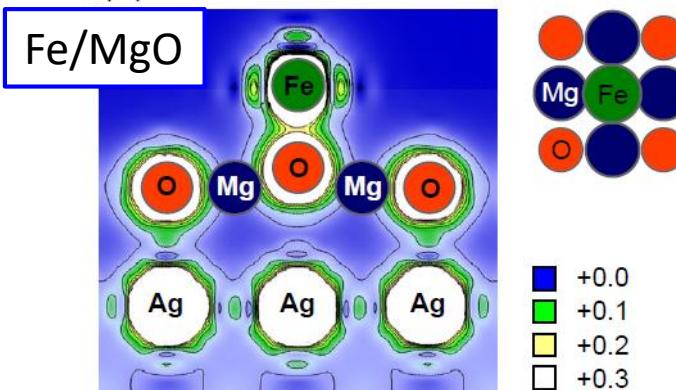
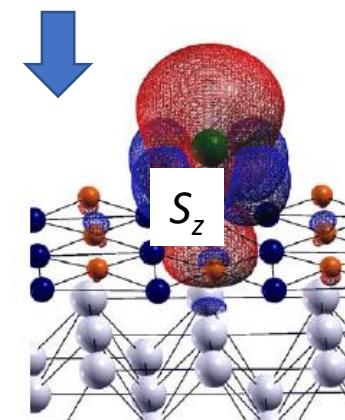


Axial (C_∞)
crystal field

$$H_{eff} = g\mu_B S_z B + D S_z^2$$

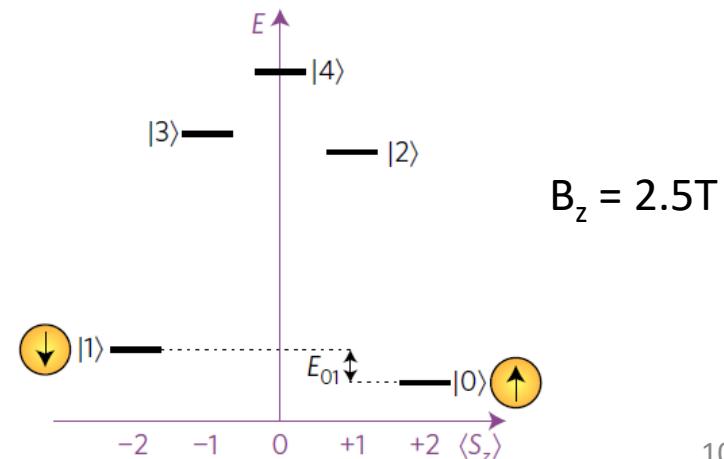


Different interactions with neighbors atoms for Co and Fe



C_{4v}
crystal field

$$H_{eff} = g\mu_B S_z B + D S_z^2 + \dots$$



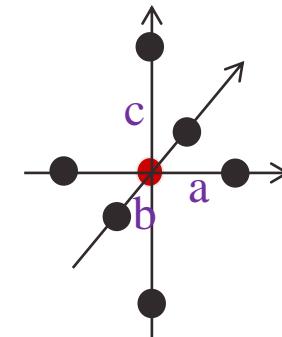
In general Λ_{xx} , Λ_{yy} , and Λ_{zz} are different (distorted octahedral symmetry)

$$H_{eff} = g_{\parallel}\mu_B(H_zS_z) + g_{\perp}\mu_B(H_xS_x + H_yS_y) + DS_z^2 + E(S_x^2 - S_y^2)$$

$$D = \lambda^2\left(\frac{1}{2}\Lambda_{xx} + \frac{1}{2}\Lambda_{yy} - \Lambda_{zz}\right) \approx \frac{\lambda^2}{\Delta E}(L_{\parallel} - L_z)$$

$$E = \lambda^2\left(\frac{1}{2}\Lambda_{xx} - \frac{1}{2}\Lambda_{yy}\right) \approx \frac{\lambda^2}{\Delta E}(L_x - L_y)$$

$$g_{\mu\nu} = 2(\delta_{\mu\nu} - \lambda\Lambda_{\mu\nu})$$



D and E are parameters describing the MAE, proportional to:

- a) orbital anisotropy
- b) Spin-orbit constant

g_{\parallel} and g_{\perp} contain also information about the orbital anisotropy

N.B.:

In the previous equations **S** should be considered as a sort of effective spin operator **S*** to be determined by fitting the data (for example: for rare earths $S^* = J$).

$$H_{eff} = H_{Zee} + \sum_{\substack{k=2 \\ even}}^{2l} \sum_{m=0}^k B_k^m O_k^m$$

O_k^m are the Stevens operators describing the CF in terms of J_z , J_+ and J_-

B_k^m are numerical coefficient to adjust (fitting parameters) the weight of each term

l is the orbital angular momentum of the considered shell; thus:

$l = 3$ for rare earth

$l = 2$ for 3d transition metals

m reflects the CF symmetry; for C_{nv} symmetry, $m = n \cdot i \quad i = 0, 1, 2, \dots$

Ex. For C_{3v} symmetric CF $\Rightarrow H_{CF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^3 O_4^3 + B_6^0 O_6^0 + B_6^3 O_6^3 + B_6^6 O_6^6$

Ex:

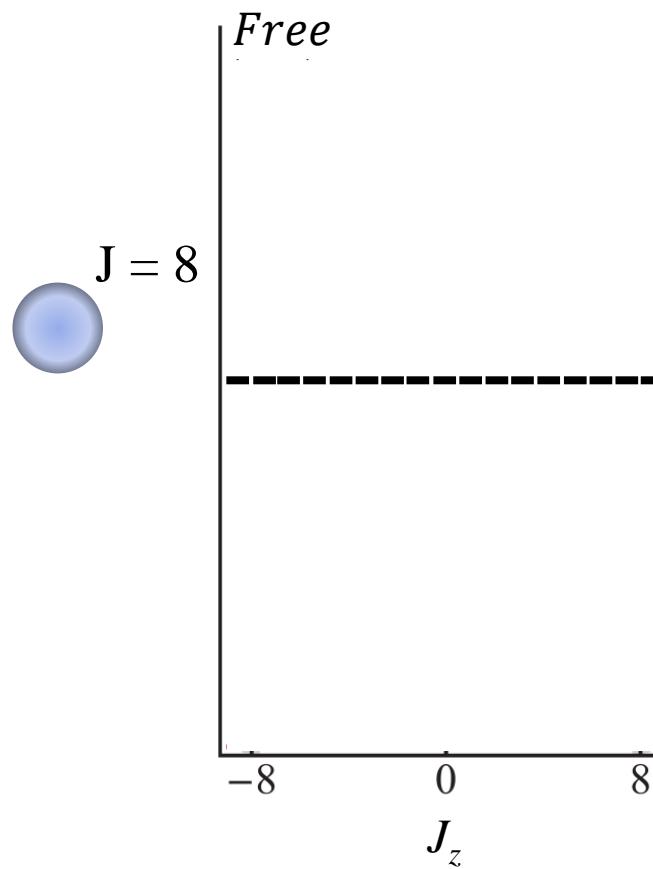
$O_2^0 = 3J_z^2 - J(J+1);$	$B_2^0 = D/3$
$O_2^2 = \frac{1}{2}(J_+^2 + J_-^2);$	$B_2^2 = 2E$
$O_4^0 = 35J_z^4 - (30J(J+1) - 25)J_z^2 + 3[J(J+1)]^2 - 6J(J+1);$	
$O_4^3 = \frac{1}{4}[J_z(J_+^3 + J_-^3) + (J_+^3 + J_-^3)J_z];$	
$O_4^4 = \frac{1}{2}(J_+^4 + J_-^4);$	

Ladder operators:

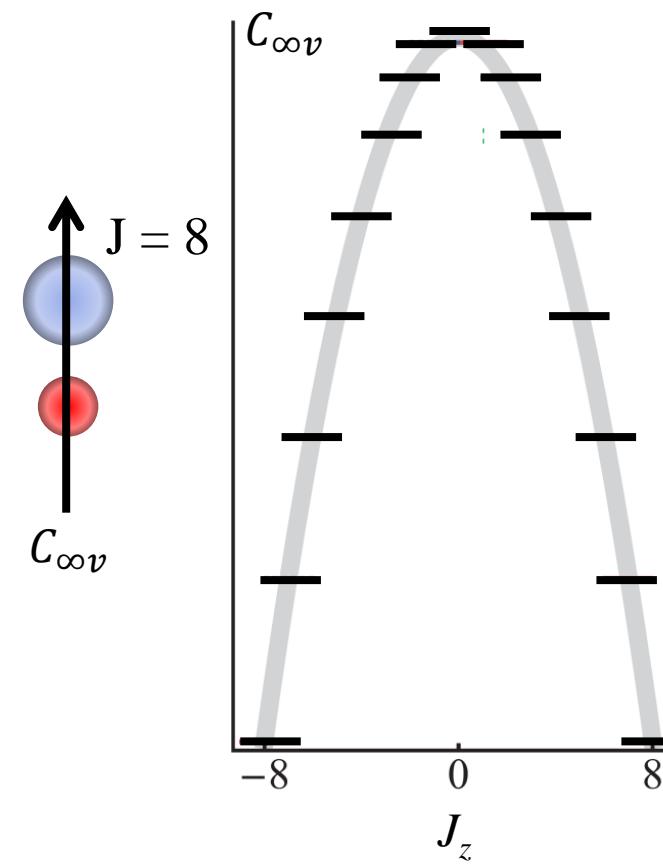
$$\hat{l}_\pm |Y_l^m\rangle = l_\pm |l, m\rangle = \sqrt{l(l+1) - m(m \pm 1)} |l, m \pm 1\rangle$$

$$l_\pm^n |l, m\rangle = \underbrace{l_\pm l_\pm l_\pm \dots l_\pm}_{n \text{ times}} |l, m\rangle$$

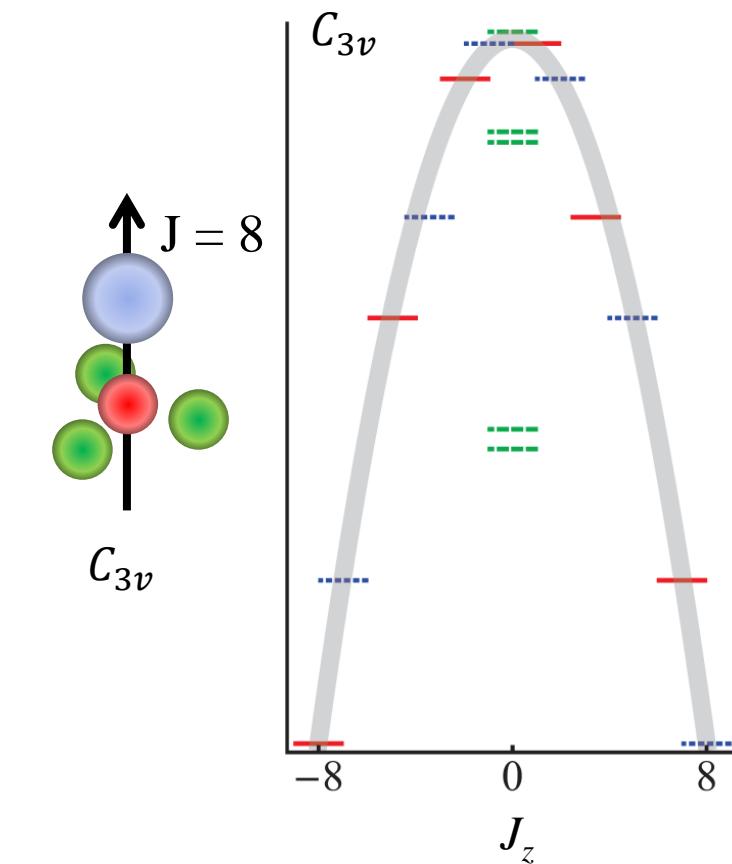
Energy scheme vs symmetry



Free atom:
The $2J+1$ states (identified by J_z) are degenerate



Uniaxial anisotropy:
pure J_z states are split



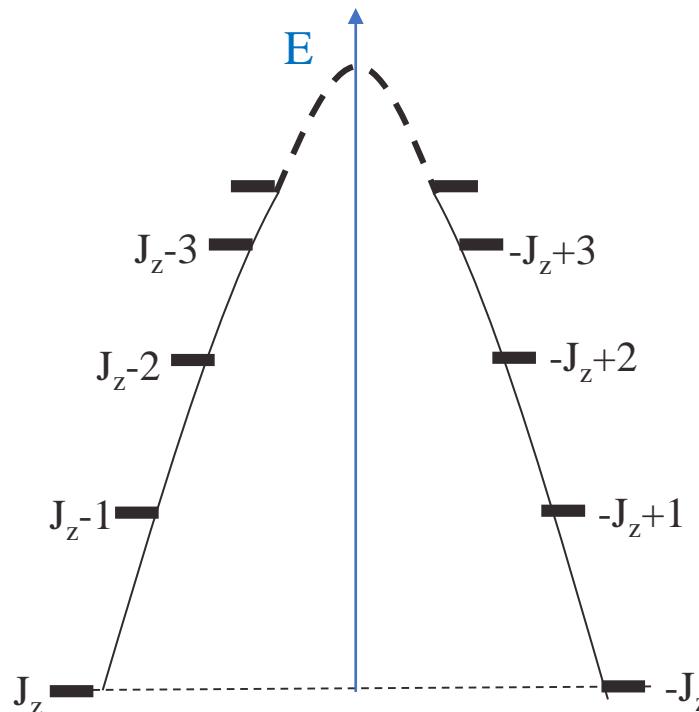
Lower symmetry:
crystal field contains O_k^m terms in the Hamiltonian
mixing J_z states separated by $\Delta J_z = m \cdot i$ $i = 0, 1, 2, \dots$

- Mixing of conjugate doublets to form singlets (forbidden for half integer J due to Kramer's theorem)
- Allowed spin transition across the barrier

See exercises: 8.1- 8.3

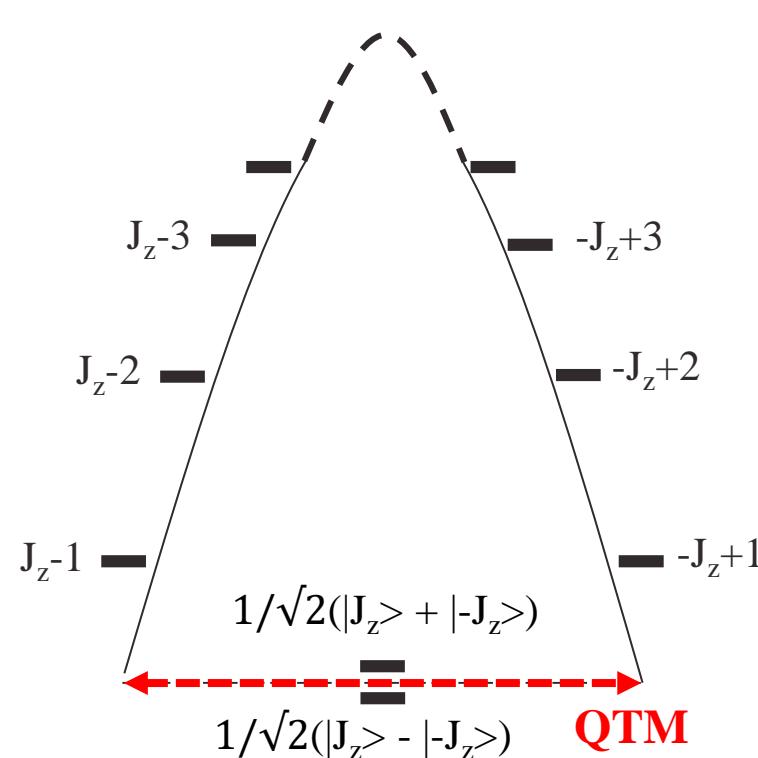
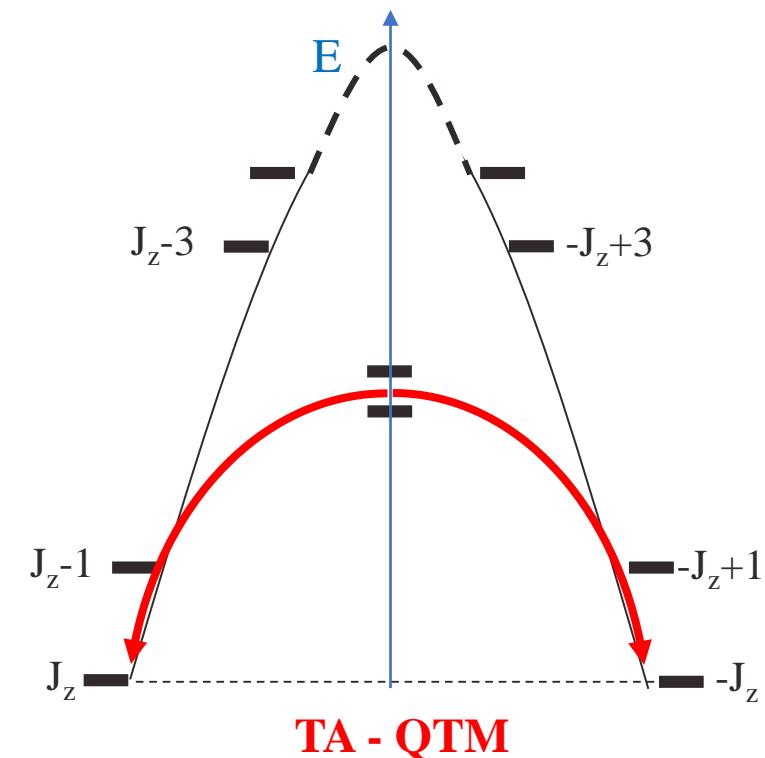
C_∞ symmetry: $H_{CF} = D J_z^2$

Pure J_z states \rightarrow No QTM



C_{nv} symmetry: $H_{CF} = D J_z^2 + E (J_+^n + J_-^n)$

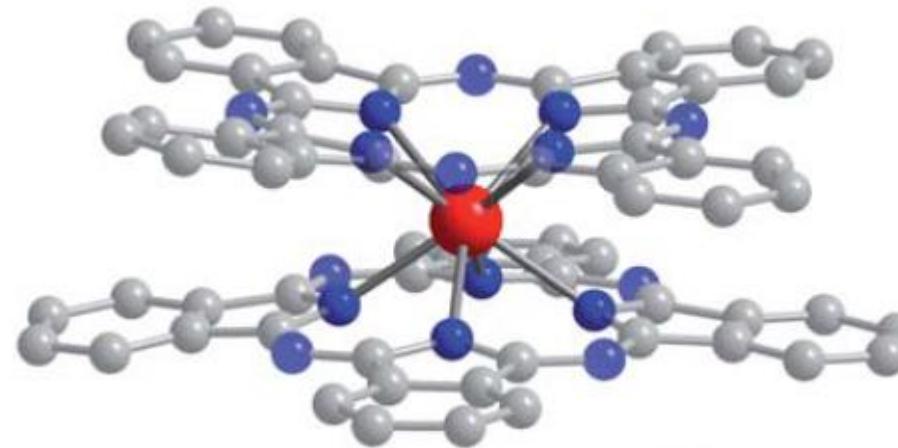
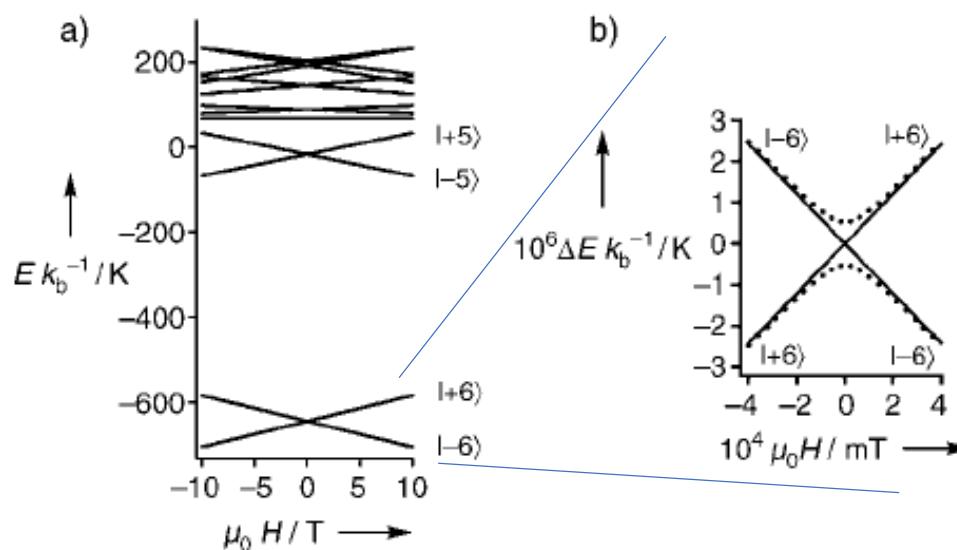
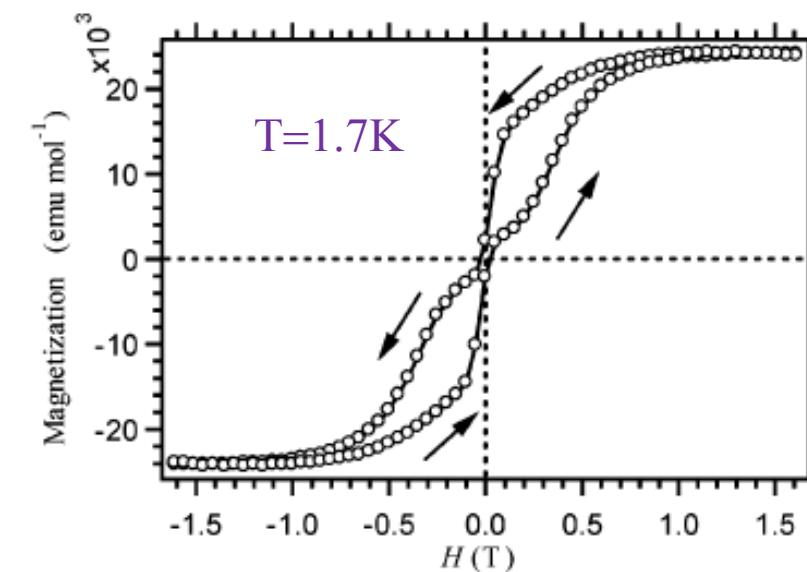
J_\pm^n operators mix states satisfying $J_z - J_{z'} = n \cdot i$ $i = 0, 1, 2, \dots \rightarrow$ QTM or TA-QTM



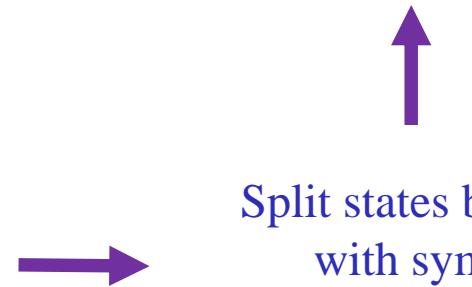
In case of QTM a net magnetization can not be stabilized in the ground state (the ground state is a superposition of spin-up and spin-down states) \rightarrow the particle can not be a bit

Chem. Sci., **2**, 2078 (2011)

See exercise: 8.4

TbPc₂Tb is in [Xe] 6s² 5d¹ 4f⁸ configuration

10.1021/jp0376065



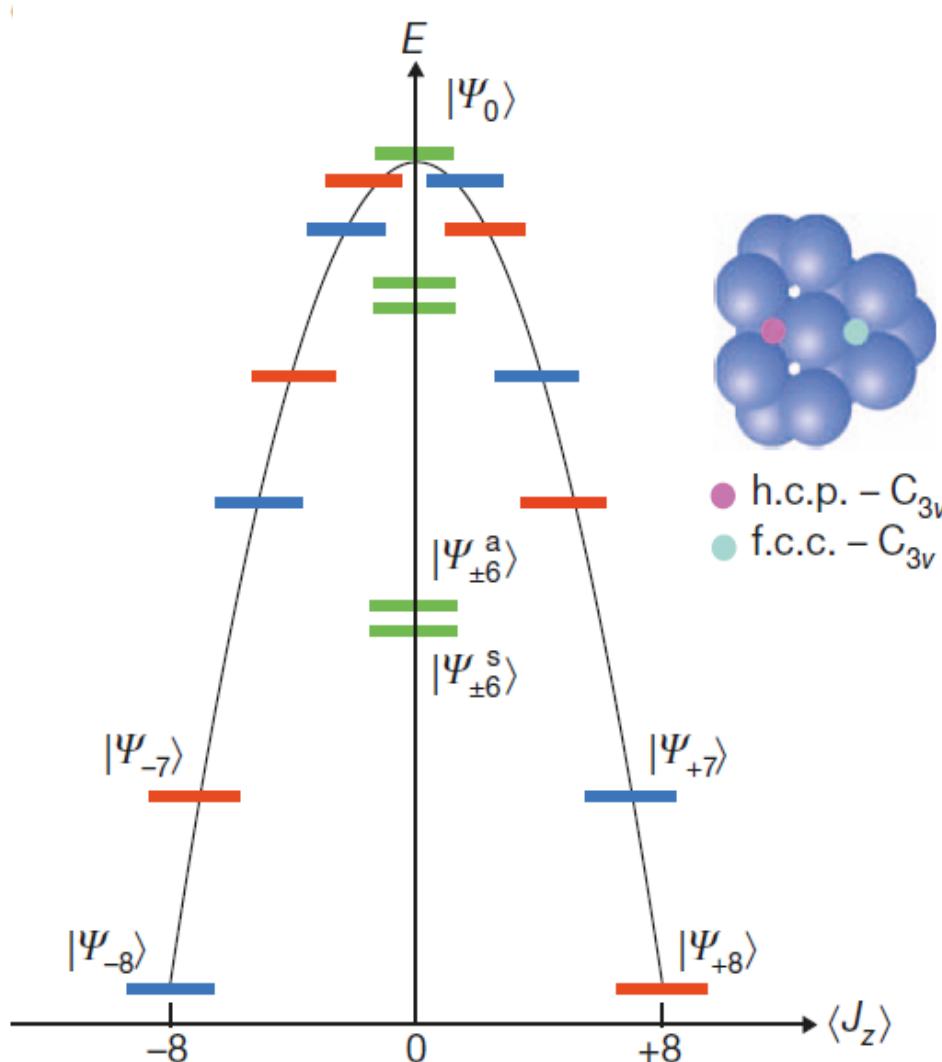
Split states by crystal field
with symmetry C_{4v}

- O_4^4 and O_6^4 operators mix the two ground states at $B \approx 0$
(dotted lines show the E vs B of the mixed states, the continuous ones E vs B for the unperturbed states)
- States become pure (suppressed spin relaxation) already in a small field \Rightarrow butterfly shaped hysteresis curve

Surface supported single atom magnets: a controversial case

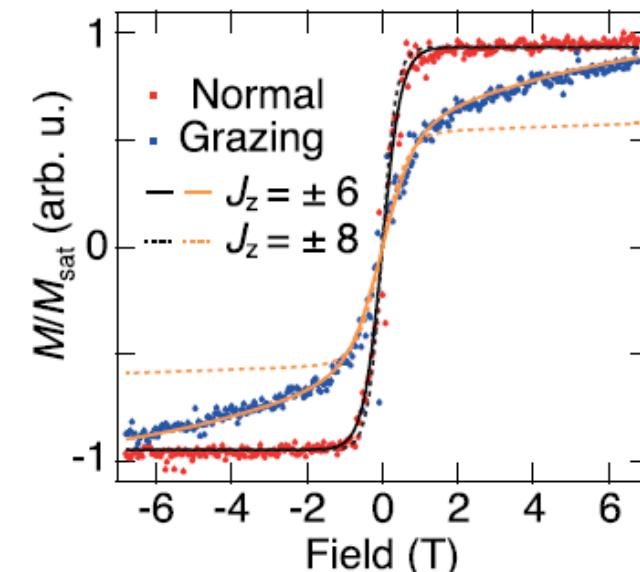
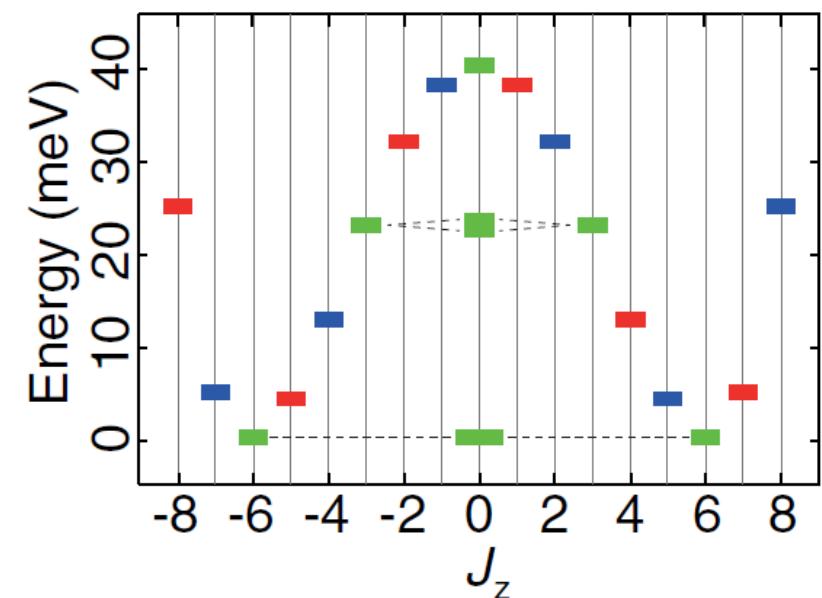
EPFL

DFT prediction: stable magnetization (no QTM)



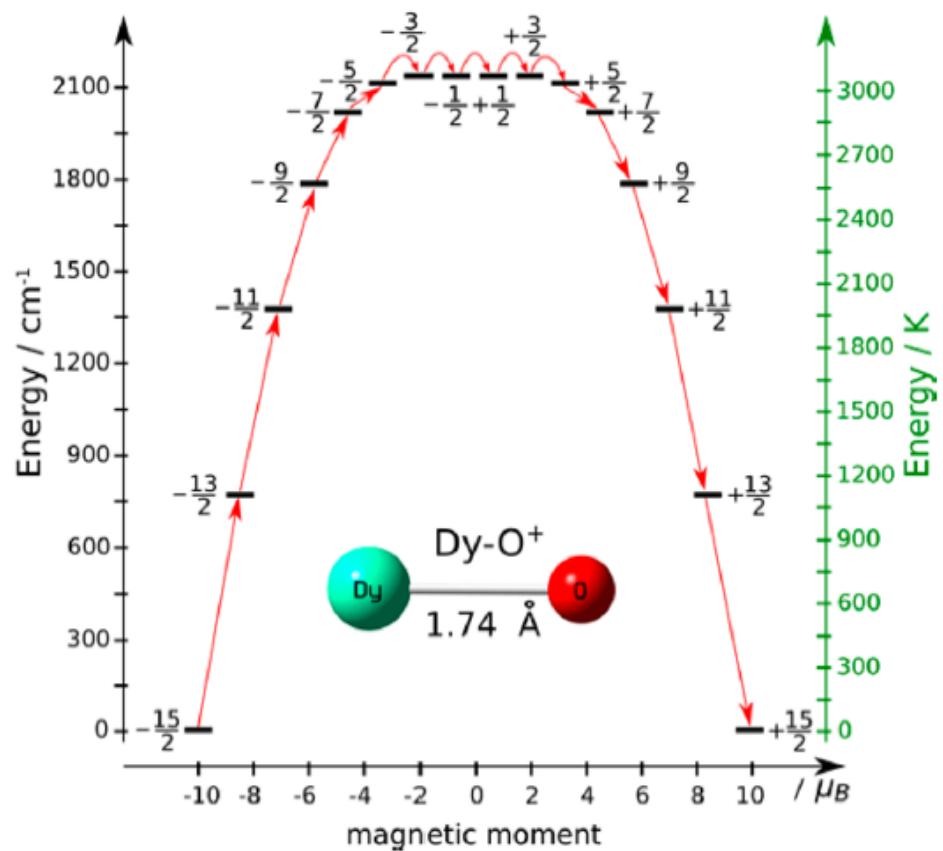
Ho/Pt(111)

Experiment: paramagnet due to QTM



Depending on the CF symmetry, it can exist terms coupling J_z and $-J_z$ ground states via J_+ (J_-) operator \rightarrow quantum tunneling \rightarrow no stable magnetization

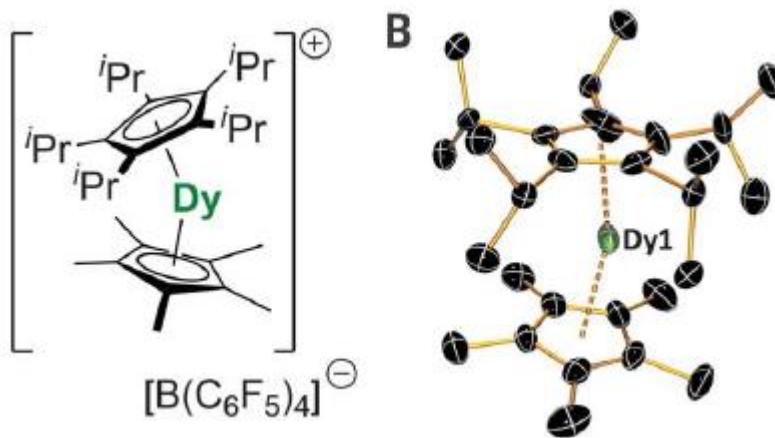
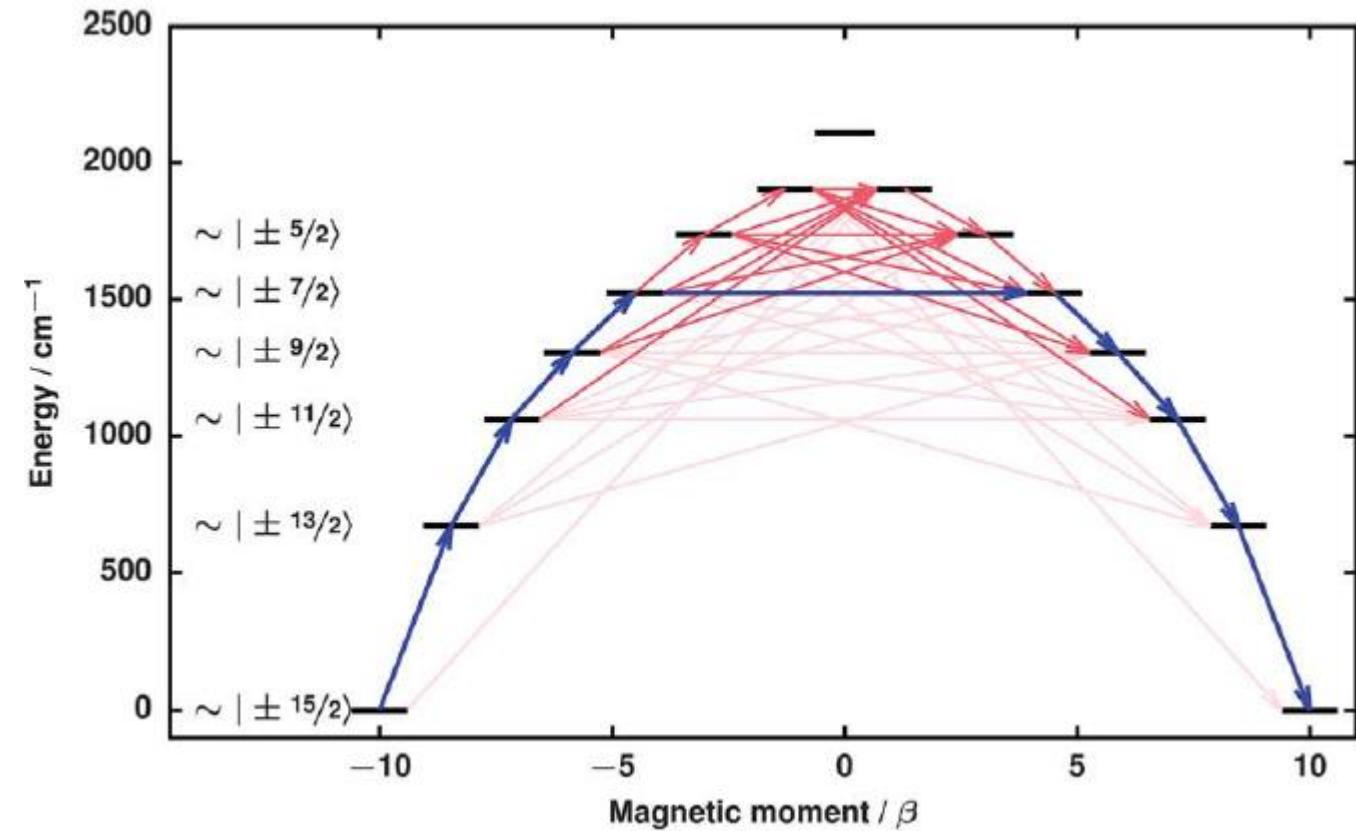
Calculation for free-standing Dy-O



Ex.: CF with a significant O_4^3 (C_{3v}) term is not convenient for Dy^{3+} ($J = 15/2$) because J_+^3 links
 $-15/2 \rightarrow -9/2 \rightarrow -3/2 \rightarrow 3/2 \rightarrow 9/2 \rightarrow 15/2$

We can increase the barrier for spin reversal by judiciously choosing the coordination environment of the lanthanide ion.

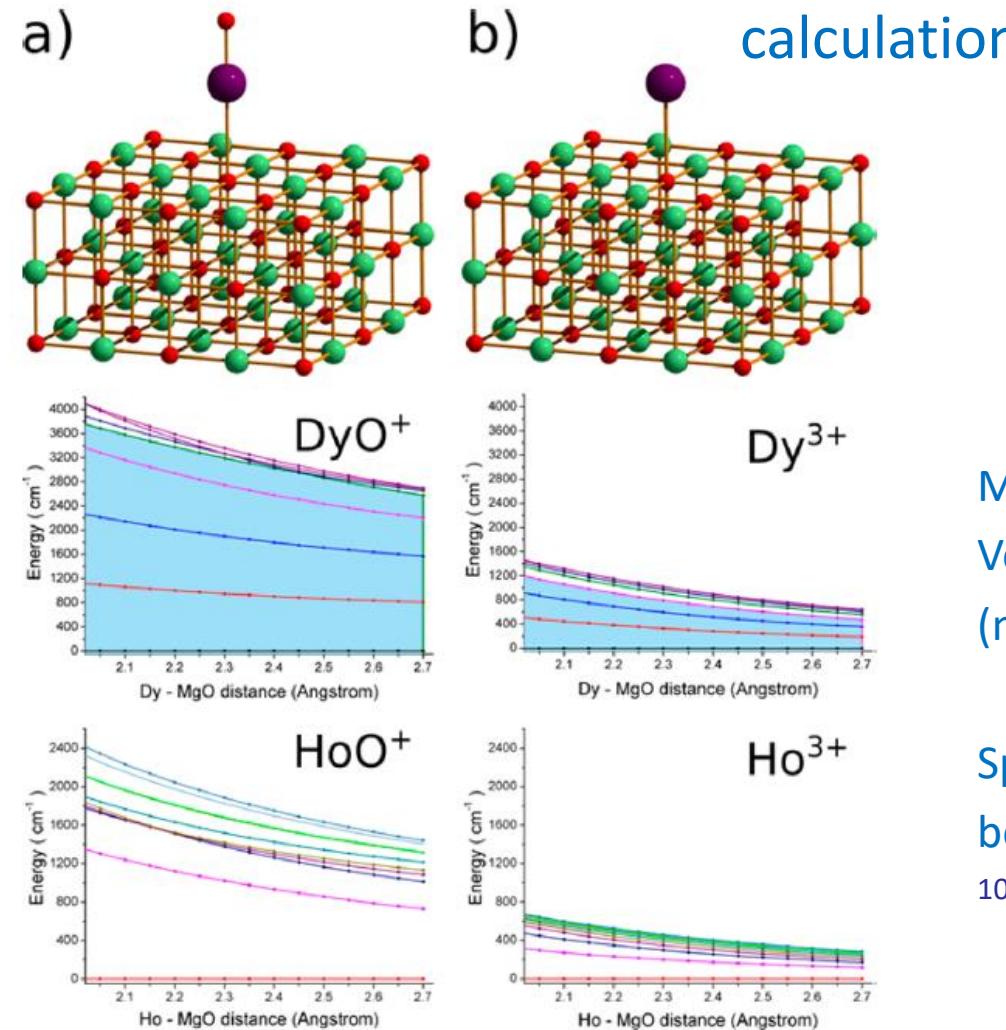
← Axial CF \rightarrow only O_2^0 , O_4^0 and O_6^0 terms \rightarrow no quantum tunneling



CF mainly axial
Very small transverse terms of order 5
No QTM (forbidden split doublets due to Kramer's theorem)

Relaxation mechanisms. Blue arrows show the most probable relaxation route, and red arrows show transitions between states with less probable, but nonnegligible, matrix elements; darker shading indicates a higher probability

RE atoms on top-O site on MgO: almost axial CF



experiment

Dy³⁺ on MgO
(4f⁹ \Rightarrow J=15/2)

Mainly axial CF
Very small transverse terms of order 4
(negligible QTM for Ho)

Spin lifetime of several days at 2K for
both Ho and Dy

10.1103/PhysRevLett.121.027201

Ho³⁺ on MgO
(4f¹⁰ \Rightarrow J=8)

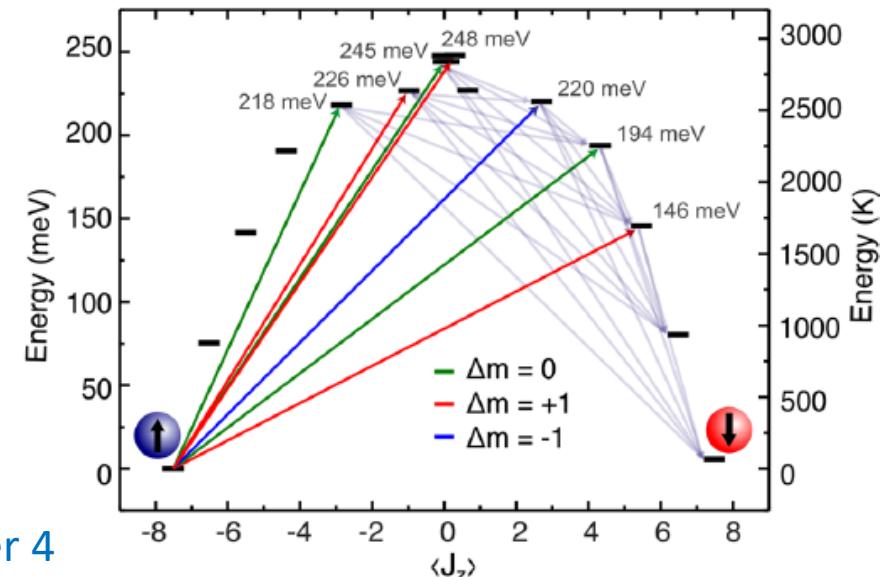
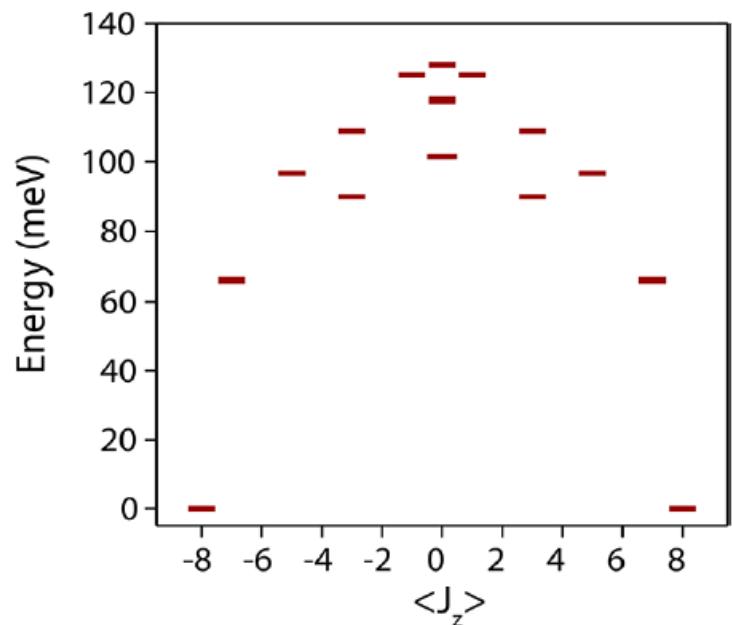


Figure 9. Comparison of the blocking barrier of $[\text{LnO}]^+$ (a) with a blocking barrier of Ln^{3+} , where $\text{Ln} = \text{Dy}$ and Ho , (b) deposited on the MgO surface. For these illustrative calculations, it was assumed that $[\text{LnO}]^+$ is oriented perpendicularly to the plane of the surface. Lines in the plots represent the energies of the low-lying $J = 15/2$ (Dy) and $J = 8$ (Ho) CF multiplet states.

$$1 \text{ eV} \approx 8000 \text{ cm}^{-1}$$

See exercise: 8.5

Phonons are distortions of the crystal field $\rightarrow H_{\text{spin-phonon}} = a (J_+, J_-) + b (J_+^2, J_-^2)$

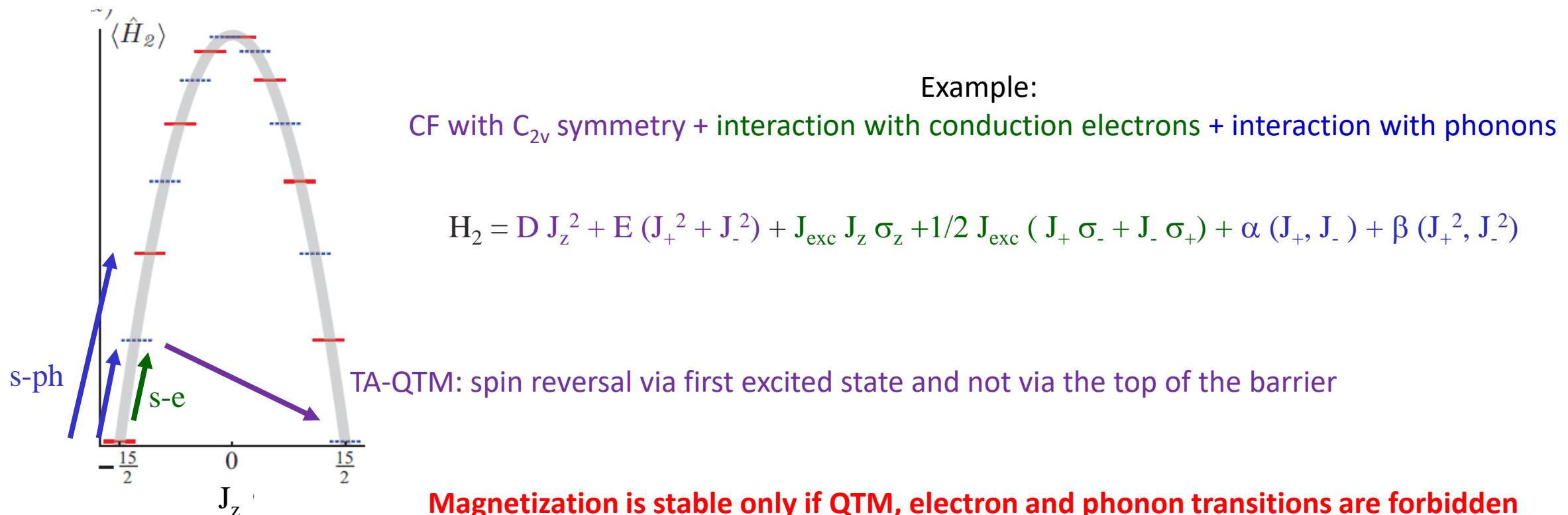
Spin-phonon scattering (s-ph) induces transitions between states differing by $\Delta J_z = \pm 1, 2$

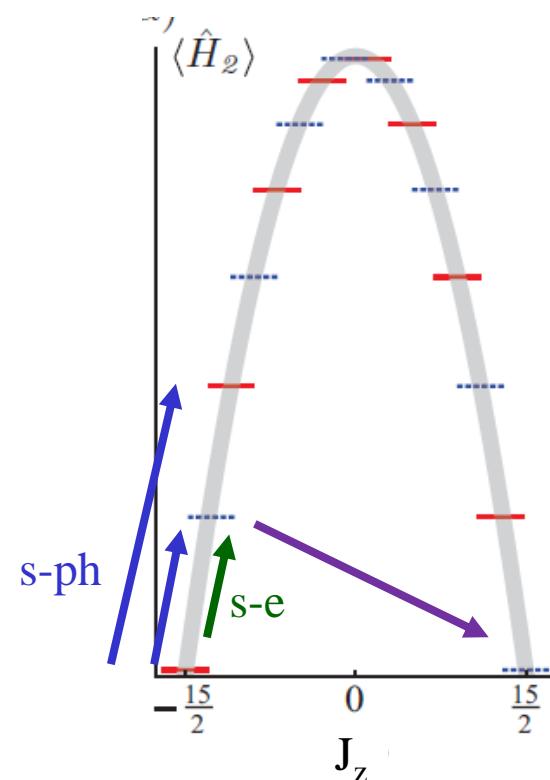
A. Fort, et al. Phys. Rev. Lett. **80**, 612 (1998)

Electrons have spin $\sigma = 1/2 \rightarrow H_{\text{spin-electron}} = J_{\text{exc}} J_z \sigma_z + 1/2 J_{\text{exc}} (J_+ \sigma_- + J_- \sigma_+)$

Spin-electron scattering (s-e) induces transitions between states differing by $\Delta J_z = \pm 0, 1$

C. Hubner et al.,
Phys. Rev. B **90**, 155134 (2014)





$$\frac{dP_m}{dt} = \sum_{m=1}^{2J+1} P_{m'} \Gamma_{mm'}^{s-el} - \sum_{m'=1}^{2J+1} P_m \Gamma_{mm'}^{s-el} + \sum_{m=1}^{2J+1} P_{m'} \Gamma_{mm'}^{s-ph} - \sum_{m'=1}^{2J+1} P_m \Gamma_{mm'}^{s-ph} + \Gamma_{m,-m}^{QTM} (P_{-m} - P_m)$$

P_m is the population of the state m

$\Gamma_{mm'}^{s-el(ph)}$ is the transition rate between states m and m' induced by a spin-electron (spin-phonon) scattering

$$\Gamma_{mm'}^{s-el(ph)} = \langle m | H_{CF} + H_{s-el} + H_{s-ph} | m' \rangle D(E)^{el(ph)} F\left(\frac{E}{k_B T}\right)^{el(ph)}$$

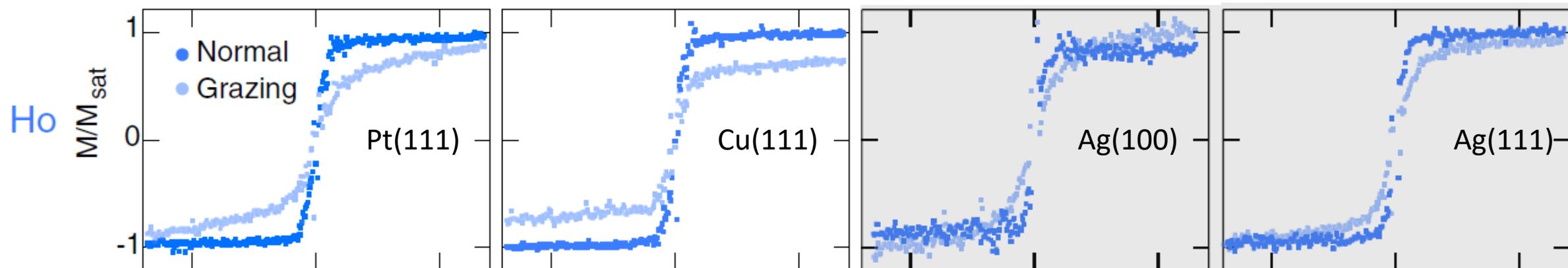
Interaction Hamiltonian matrix element between m and m' states

Electron (phonon) DOS

Fermi-Dirac (Bose-Einstein) function

Effect of a decoupling layer

An Ho atom shows paramagnetic behavior when adsorbed on metal surfaces



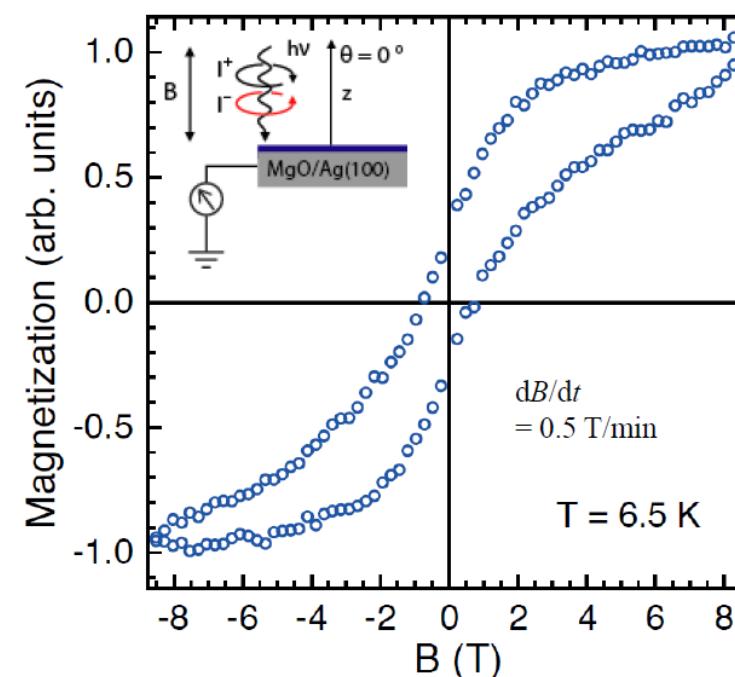
10.1103/PhysRevB.96.224418

Ho atom shows hysteresis (long spin lifetime)
when adsorbed on top-O site on a MgO/Ag(100)

Consequence of reduced:

- spin-phonon scattering (MgO is stiff)
- spin-electron scattering (MgO is an insulator)

$D(E)^{el(ph)}$ is small

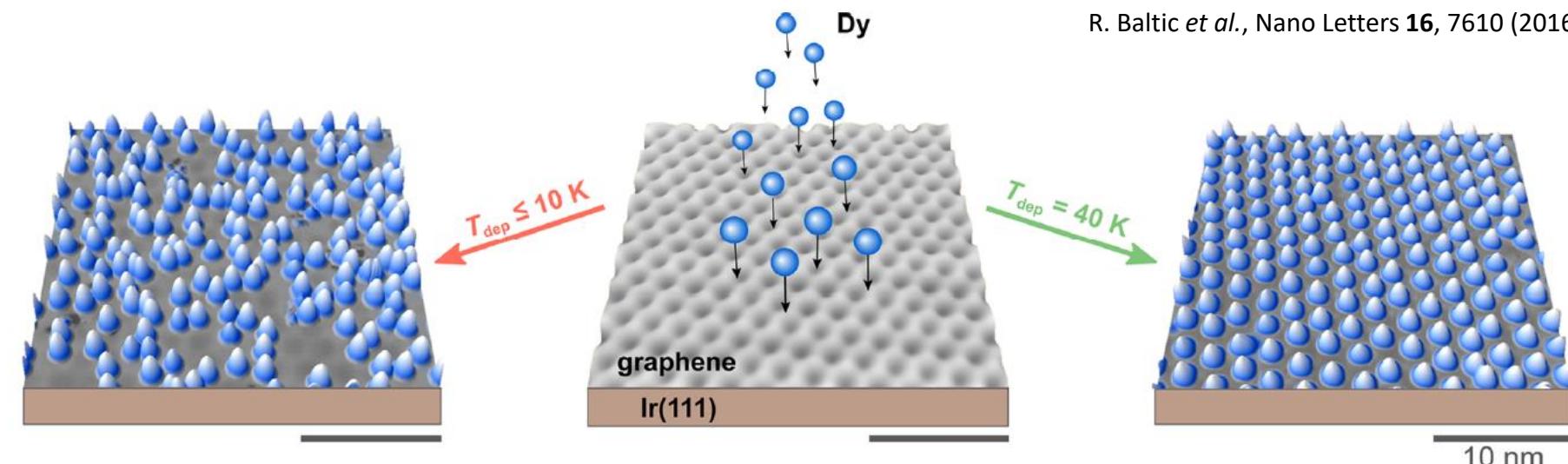


Ho/MgO/Ag(100)

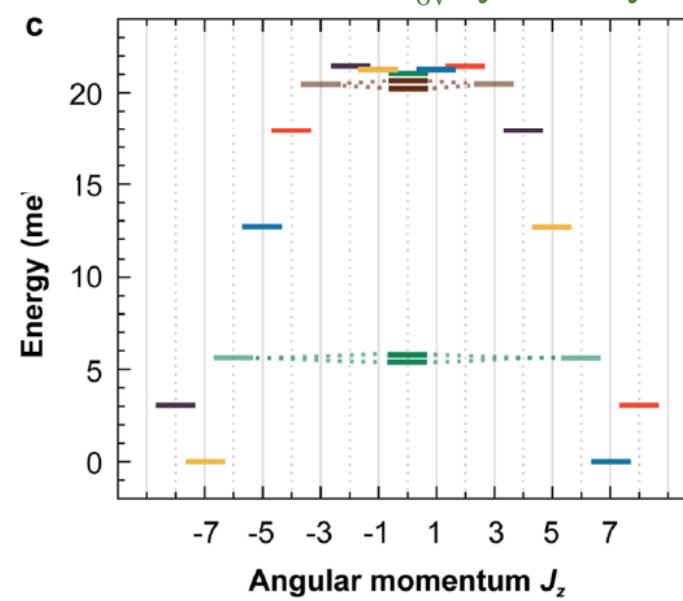
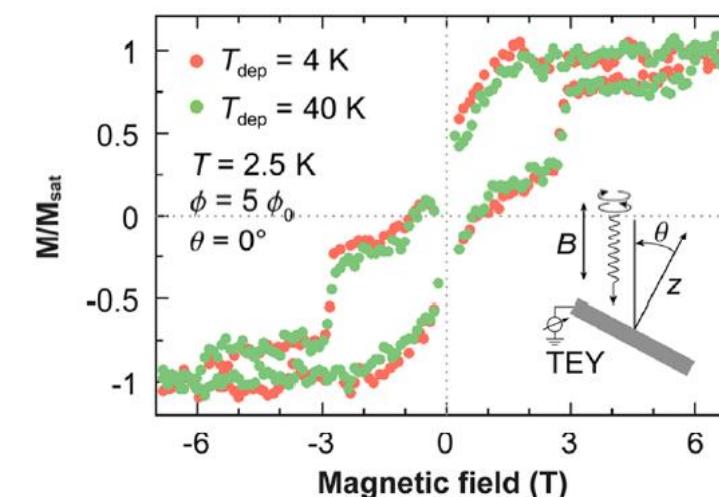
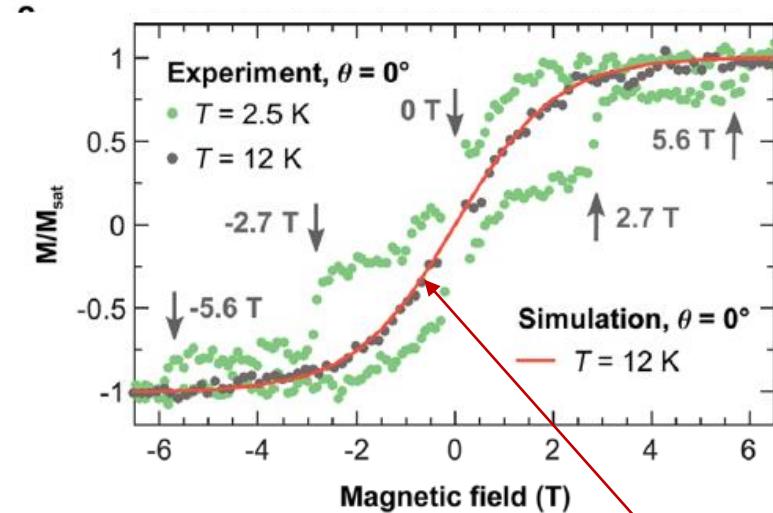
F. Donati *et al.*, Science 315, 319 (2016).

Lattice of single atom magnets

- Dy on graphene has an electronic configuration similar to the gas phase: $[\text{Xe}] 6s^2 4f^{10}$ configuration $\Rightarrow J = 8$
- Dy adsorbs in the center of a graphene hexagon (hollow site) \Rightarrow CF with C_{6v} symmetry



CF with C_{6v} symmetry



TA-QTM $\rightarrow M \neq 0$ at $B = 0 \text{ T}$, and T low enough ($< 10 \text{ K}$)

$$F \left(\frac{E}{k_B T} \right)^{el(ph)}$$

Graphene decouples from the soft metallic support: reduced spin-phonon and spin-electron scattering ($D(E)^{el(ph)}$ is small)